Stable Au–C bonds to the substrate for fullerene-based nanostructures
نویسندگان
چکیده
We report on the formation of fullerene-derived nanostructures on Au(111) at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111), bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111) surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature.
منابع مشابه
Reducing the molecule-substrate coupling in C60-based nanostructures by molecular interactions.
Codeposition of C60 and the three-dimensional molecular hydrocarbon 1,3,5,7-tetraphenyladamantane (TPA) on Au(111) leads to the spontaneous formation of molecular nanostructures in which each fullerene is locked into a specific orientation by three surrounding TPA. Scanning tunneling spectroscopy shows that the electronic coupling of C60 with the surface is significantly reduced in these nanost...
متن کاملEncapsulation of Methane Molecules into C60 Fullerene Nanocage: DFT and DTFB-MD Simulations
Extensive urbanization has greatly raised the demand for cleaner coal- and petroleum-derived fuels. Mainly composed of methane, natural gas represents a promising alternative for this purpose, making its storage a significant topic. In the present research, deposition of methane molecules in C60 fullerene was investigated through a combined approach wherein density functional based tight bindin...
متن کاملA theoretical study of dipole moments, energy levels and structural parameters in the Oxymetazoline drug as a nano carrier based on fullerene with changing substitution
Oxymetazoline is a decongestant. It works by constricting (shrinking) blood vessels (veins and arteries) in your body. The nasal formulation acts directly on the blood vessels in your nasal tissues. Constriction of the blood vessels in your nose and sinuses leads to drainage of these areas and a decrease in congestion. Oxymetazoline is an adrenomimetic that nonselectively agonizes α1...
متن کاملStructure of SiAu16: can a silicon atom be stabilized in a gold cage?
Nanostructures of Au and Si as well as Au-Si hybrid structures are topics of great current interest from both scientific and technological points of view. Recent discovery of Au clusters having fullerene-like geometries and the possibility of endohedral complexes with Si atoms inside the Au cage opens new possibilities for designing Au-Si nanostructures. Using ab initio simulated annealing meth...
متن کاملEffects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures
The effects of thermal substrate pretreatment on the growth of Au-catalyzed ZnO nanostructures by pulsed laser deposition are investigated. C-plane sapphire substrates are annealed prior to deposition of a thin Au layer. Subsequent ZnO growths on substrates annealed above 1,200°C resulted in a high density of nanosheets and nanowires, whereas lower temperatures led to low nanostructure densitie...
متن کامل